Community Structure and Biodiversity

AP Biology: *Chapter 46*

Key Concepts:

- A habitat is the type of place where individuals of a species normally live
- Every species in the community has its own niche
- Community structure starts with the adaptive traits that allow response to a habitat
- Interactions among species influence the structure of a community

Key Concepts:

- Community structure depends on the location, size of habitat, rates of member arrival and disappearance, and physical disturbance to a habitat
- The first species to occupy a habitat are replaced by others
- Different stages of succession often exist in the same habitat

Impacts, Issues

Fire Ants in the Pants

 Imported fire ants disturb community structures; in the US, phorid flies are being introduced to control them – tipping the balance once again

Community

- All the populations that live together in a habitat
- Type of habitat shapes a community's structure
- Factors shaping community structure:
 - Climate and topography
 - Kinds and amounts of food and other resources
 - Species' adaptations to habitat conditions
 - Species interactions
 - Timing and history of disturbances

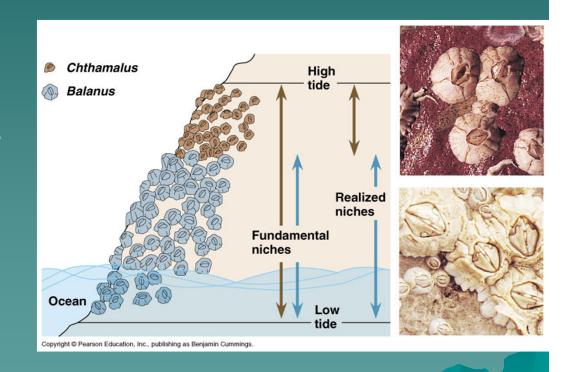
Woodland community

Niche

Sum of activities

 and relationships in
 which a species
 engages to secure

 and use resources
 necessary for
 survival and
 reproduction.



Decomposer niche

Realized & Fundamental Niches

- Fundamental niche
 - Theoretical niche occupied in the absence of any competing species
- Realized niche
 - Niche a species actually occupies
- Realized niche is some fraction of the fundamental niche

Factors that Shape Community Structure

- Habitat
- Community
- The niche

Type of Interaction	Species 1	Species 2
Commensalism	+	0
Mutualism	+	+
Interspecific Competition	-	-
Predation	+	-
Parasitism	+	-

- Interactions
 - Commensalism
 - Mutualism
 - Interspecific competition
 - Predation
 - Parasitism

Key: 0 = no direct effect+ = positive effect

- = negative effect

Commensalism

- Commensalism
 - A symbiotic relationship in which one species benefits and the other is indifferent
 - Many supposed examples may turn out to be mutualism or parasitism
 - ◆Cattle egret and cattle
 - Sharks and remoras
 - ◆Spanish moss and trees

Mutualism

- Both species benefit
- Some are obligatory

- partners depend upon each other
 - ◆Yucca plants and yucca moth
 - ◆Mycorrhizal fungi and plants
 - ◆Sea anemone and pink anemone fish

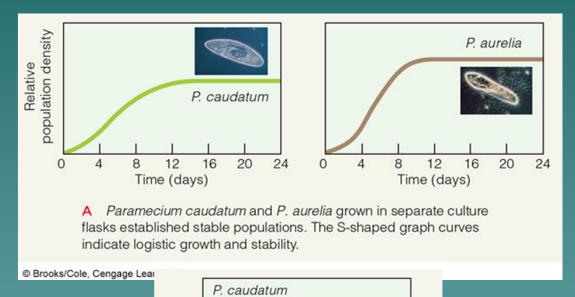
Forms of Competition

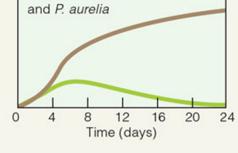
- Competitors may have equal access to a resource; compete to exploit resource more effectively
- One competitor may be able to control access to a resource, to exclude others

Interference Competition

- Least chipmunk is excluded from piñon pine habitat by the competitive behavior of yellow pine chipmunks (interspecific competition)
- Golden eagle gently
 discourages a red fox to
 abandon the moose
 carcass they both have
 discovered.

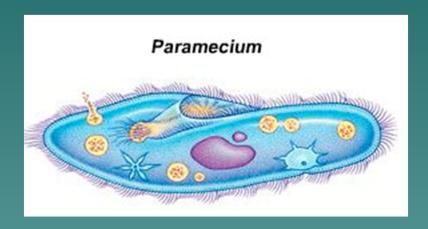
Competitive Exclusion


Competitive exclusion (<u>Gause's Principle</u>)


When two species compete for identical resources, one will be more successful and will eventually eliminate the other

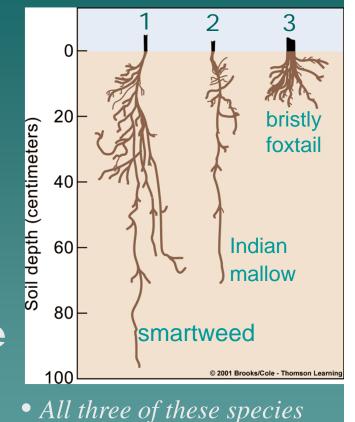
Two species of

Paramecia competing


for <u>exactly the same</u> resources.

B For this experiment, the two species were grown together. *P. aurelia* (*brown* curve) drove *P. caudatum* toward extinction (*green* curve).

Gause's Experiment

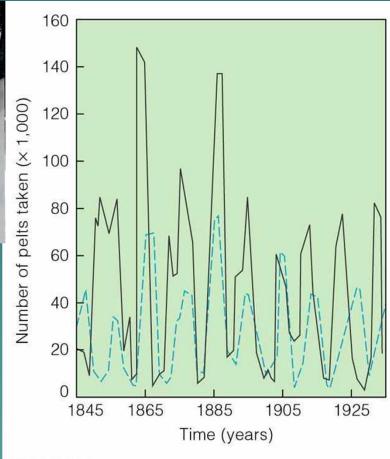


Competitive exclusion

Resource Partitioning

- Apparent competitors may have slightly different niches
- May use resources in a different way or time
- Minimizes competition and allows coexistence

• They coexist by each exploiting a different portion of the habitat.


require water and the same

mineral ions.

Predation and Coevolution

- **Predation**
 - Predators & Prey
 - Predators are free-living (can be herbivores)
 - Parasites & Hosts
 - Parasites take up residence in/on prey
- Coevolution
 - Selective pressure = joint evolution

Lynx - dash lines **Snowshoe Hare - solid line** 3rd level interaction—involves plants (see pix above)

Chapter 46

@ 2006 Brooks/Cole - Thomson

Coevolution Arms Race - Prey Defenses

Camouflage

Body shape, color pattern and behavior that make an individual blend in with its surroundings

Warning coloration

 Many toxic or unpalatable species have bright colors and patterns that predators learn to avoid

Mimicry

One species resembles another species

What

Which is the mimic?

Plants?

Coevolution Arms Race - Prey Defenses

Moment-of-truth defense

Adaptive responses of predators

When cornered this beetle sprays noxious chemicals

This mouse seems to have no problem – plunges the posterior into the ground!

Mimicry

- Batesian mimicry
 - harmless species look like dangerous ones

 2 or more dangerous species look alike stronger response in predators

Monarch butterfly

Viceroy butterfly

bee


wasp

Parasitic Interactions

- Parasites drain nutrients from their hosts and live on or in their bodies
- Natural selection favors parasites that do not kill their host too quickly
- Micro-parasites bacteria, viruses, protists
- Macro-parasites flatworms & roundworms
- Social parasites ex. cuckoo, cowbird
- Biological control agents

Wasp controlling aphid population

Dodder – a parasitic plant

Forces Contributing to Community Stability – Ecological Succession

- Change in the composition of species over time
- Classical model describes a predictable sequence with a stable climax community
 - Primary succession
 - New environments
 - Secondary succession
 - Communities destroyed or displaced
- Cyclic-non-directional changes
 - Tree falls cause local patchiness in tropical forests
 - Fires periodically destroy underbrush in sequoia forests

Glacier retreating

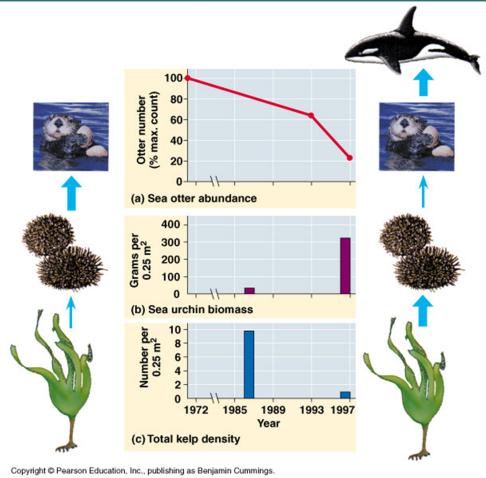
Ecological Succession

Pioneer species

- Species that colonize barren habitats
- Lichens, small plants with brief life cycles
- Improve conditions for other species who then replace them

Climax community

- Stable array of species that persists relatively unchanged over time
- Succession does not always move predictably toward a specific climax community; other stable communities may persist



Secondary succession will follow this fire.

Community Instability

- Disturbances can cause a community to change in ways that persist even if the change is reversed
- Keystone species species that can dictate community structure
- Removal can cause dramatic changes in community

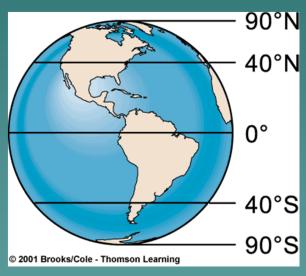
Sea otters as keystone predators in NW

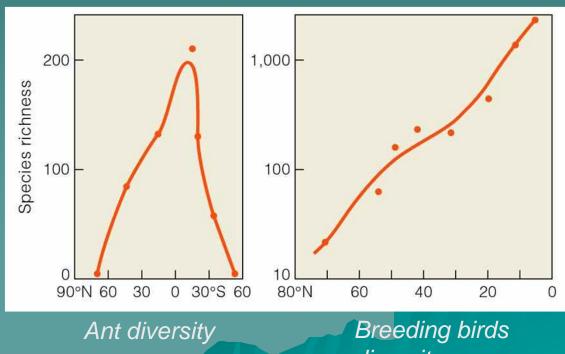
Chapter 46

Community Instability

- ♦ New species introduced usually invasive
 - Non-indigenous species can decimate a community
 - No natural enemies or controls
 - Can outcompete native species
 - Jump dispersal organisms transported over great distances
 - ♦ Some US Problems:
 - Gypsy moths, Argentina fire ants, house sparrow,
 Japanese beetle, kudzu, lionfish (video)
 - ♦ Most famous case: rabbits

in Australia

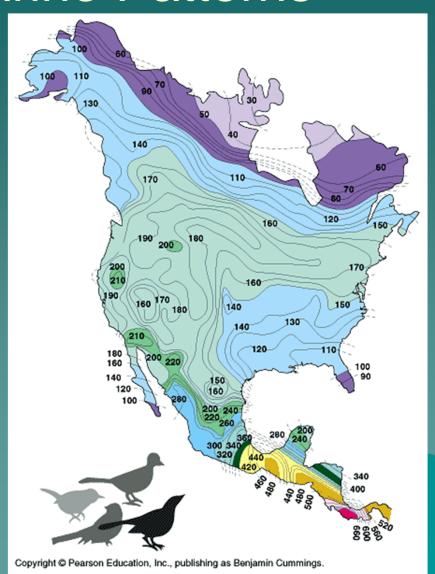




Kudzu vine

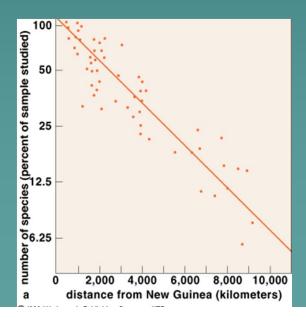
Diversity by Latitude

 Diversity of most groups is greatest in tropics; declines toward poles


Chapter 46

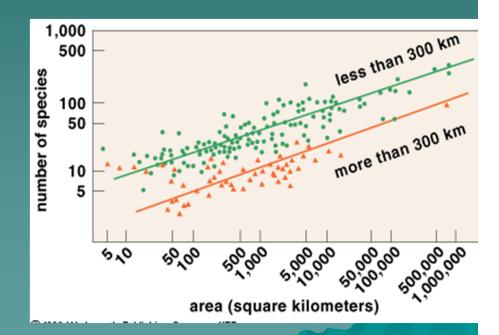
diversity

Mainland and Marine Patterns


Tropics

- Greatest number of coexisting species
- Resource availability is greatest
- Species diversity might be selfreinforcing
- Rates of speciation in the tropics have exceeded those of background extinction

Distance Effect


- The farther an island is from a mainland, the fewer species
- Closer islands receive more immigrants
- Species that reach islands far from mainland are adapted for long-distance dispersal and can move on

Island Patterns

Area Effect

 Larger island supports more species than smaller islands

Chapter 46

46.1 Key Concepts

Community Characteristics

- A community consists of all species in a habitat
- Each species has a niche—the sum of its activities and relationships
- ◆ A habitat's history, its biological and physical characteristics, and the interactions among species in the habitat affect community structure

46.2-46.7 Key Concepts

Types of Species Interactions

 Commensalism, mutualism, competition, predation, and parasitism are types of interspecific interactions

◆ They influence the population size of participating species, which in turn influences the community's structure

46.8-46.10 Key Concepts

Community Stability and Change

- Communities have certain elements of stability, as when some species persist in a habitat
- Communities also change, as when new species move into the habitat and others disappear
- Physical characteristics of the habitat, species interactions, disturbances, and chance events affect how a community changes over time

46.11 Key Concepts

Global Patterns in Community Structure

- Biogeographers identify regional patterns in species distribution
- ◆ They have shown that tropical regions hold the greatest number of species, and also that characteristics of islands can be used to predict how many species an island will hold