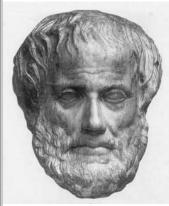
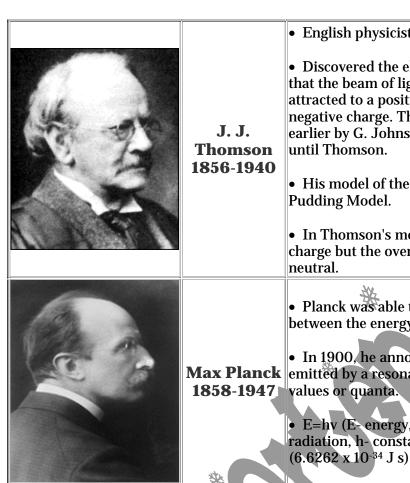

Chemistry


____/___/___

History of the Atom

Democritus 470-380 B.C.

- Known as the "Laughing Philosopher" because of his joyous spirit.
- First to suggest the idea of atoms (atomos Greek "a" meaning "not" & tomos meaning "cut"). He thought matter was composed of tiny indivisible particles atomos.


Aristotle 384-322 B.C.

- Spoke out against Democritus and atomism.
 Aristotle felt matter was continuous.
- The Catholic Church accepted Aristotle's position and came to equate atomistic ideas with Godlessness.
- In 1624, the Parliment of Paris had issued a decree that anyone holding or teaching a position opposed to Aristotle (including atomism) was liable to be put to death (needless to say, atomism didn't have a chance).

John Dalton 1766-1844

- English school teacher (started teaching when he was only 12 years old) who became known as Father of the Atomic Theory.
- Dalton's Atomic Theory :
 - All matter is composed of indivisible particles called atoms.
 - Atoms of the same element have the same physical & chemical properties.
 - Atoms of different elements have different physical & chemical properties.
 - Two or more atoms of different elements can chemically combine in simple whole number ratios to form compounds.
 - Atoms cannot be subdivided, created or destroyed when involved in a chemical reaction.

Einstein

879-1955

- English physicist.
- Discovered the electron in 1897 after observing that the beam of light in a cathode ray tube is attracted to a positive charge and repelled by a negative charge. The electron was named years earlier by G. Johnston Stoney but not detected
- His model of the atom is called the Plum
- In Thomson's model electrons have a negative charge but the overall charge of the atom is
- Planck was able to deduce the relationship between the energy and the frequency of radiation.
- In 1900, he announced that the energy(E) Max Planck emitted by a resonator could only take on discrete
 - E=hv (E-energy, v the frequency of the radiation, h-constant called Planck's constant.
 - In 1905 used Planck's constant and proposed that light could be described as quanta of energy that behave as particles.
 - Einstein used Planck's particle theory of light to explain the photoelectric effect (the release of electrons from metal when light shines on it).
 - This was the first use of the Planck's theory by someone other than Planck.

Ernest Rutherford 1871-1937	 Student of J.J. Thomson. Conducted the gold foil experiment in 1909 when he shot alpha particles at a sheet of gold
	foil only 1/3000 of an inch thick. • Rutherford expected the positively charged alpha particles to pass right through the gold foil, and most did. However, a small number of particles were deflected off at an angle and some even bounced straight back. • Rutherford discoved that that the atom is mostly empty space and there is a small positively charged core where the bulk of its mass is located. Rutherford named this small positively charged core, nucleus (Latin, "little nut").
Robert Millikan 1868-1953	Determined the charge of the electron with his oil drop experiment in 1913.
Niels Bohr 1891-1973	 Student of Ernest Rutherford In 1913 Bohr proposed a revised atomic model. He used Planck's work to correct a flaw in Rutherford's model. He placed electrons into paths of definite energy circling the nucleus. Modeled his atomic structure after the solar system.

Louis de Broglie 1892-1987	 In 1924 de Broglie discovered the wave nature of electrons. De Broglie solved the electrodynamic problems with Bohr's model of the atom in his 3 page Phd. submission that set out a relationship between mass velocity and wavelength. During World War I de Broglie served in the army. He was attached to the wireless telegraphy section for the whole of the war and served in the station at the Eiffel Tower.
Erwin Schrödinger 1887-1961	 Schrödinger wrote and solved a mathematical equation describing the location and energy of an electron in a hydrogen atom in 1926. Schrödinger's equation is the current description of the electron in the atom. This mathematical model is called the quantum mechanics model or electron cloud model.
Werner Heisenberg 1901-1976	 In 1927 Heisenberg developed his uncertainty principle which explains that it is physically impossible to measure both the exact position and the exact momentum of a particle at the same time. The more precisely one of the quantities is measured, the less precisely the other is known. Heisenberg's principle proved that Bohr's model of the atom is incorrect.
James Chadwick 1891-1974	 Student of Ernest Rutherford. In 1932 Chadwick proved the existence of neutrons.